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Abstract Problems involving the modeling and free vibration of pre-twisted rotating blades made of functionally
graded materials (FGMs) and operating in a high-temperature field are considered. The blade, mounted on a rigid
hub, is modeled as a thin-walled beam that incorporates the warping restraint and the pre-twist effects. As a result of
the latter feature, an extension-twist elastic coupling is induced. Consistent with the concept of the FGM structures,
the two constituent materials, ceramic and metal, experience a continuous variation across the beam wall thickness,
and, as a result, the adverse effects featured by the standard laminated structures, such as delamination/debonding,
are precluded to occur. Numerical results highlighting the effects of the extension-twist elastic coupling considered
in conjunction with the volume fraction of the two constituent phases and of the thermal degradation of material
properties on eigenfrequencies are presented, and pertinent conclusions are outlined. Comparisons of predictions,
as well as validations of results against those obtained in some special cases, which are available in the specialized
literature, are also supplied. In addition to a better understanding of the implication of incorporation of FGMs,
the results of this research can be instrumental toward the reliable design of advanced turbomachinery blades that
operate in a high-temperature environment.

Keywords Free vibration · Functionally graded materials · Rotating blades · Thermal degradation ·
Twist-extension coupling

1 Introduction

It is a well-known fact that, during their operational life, gas-turbine blades are exposed to severe environments
consisting, among others, of time-dependent high-temperature fields and thermal shocks. Due to induced vibration,
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2 L. Librescu et al.

catastrophic, or in the best-case scenario, fatigue failures of blades can occur. Moreover, in order to enhance their
efficiency, increases of the operating temperature field are needed.

A similar situation is valid with the flexible space booms attached to spinning satellites which, due to the rapid
temperature changes at day-night transitions in orbit, are exposed to a catastrophic dynamic instability referred
to as the thermal flutter. In order to preclude such damaging phenomena from occurring, to increase their effi-
ciency and ensure long-life structurally sound turbomachinery blades, two basic issues have to be properly addres-
sed:

1. Incorporation of advanced-material systems capable of withstanding high-temperature fields and thermal shocks.
Among the best candidates that can address this requirement are functionally graded materials (FGMs).
As is well known, these materials, developed for high-temperature structural applications are composed of
different constituents, such as ceramics and metals, with a continuously graded variation in composition across
their wall thickness.
Metal–ceramic FGMs combine synergistically the positive properties of these two constituents, in the sense that
the ceramic in a FGM offers thermal-barrier capabilities and protects the metal from corrosion and oxidation,
while the FGM is toughened and strengthened by the metallic composition. As a result, these materials are able
to withstand high-temperature gradients, without structural failure.
Moreover, in contrast to standard laminated composite structures whose material properties are piecewise
constant through the wall thickness, and, as a result, are exposed to adverse interface effects that can yield
the failure of the structure, in the case of the FGMs, due to the smooth variation of their material properties, the
occurrence of such effects is precluded.
In addition to the research work devoted to modeling of 3-D FGM media, the studies involving thin-walled
structures made up of FGMs have been mainly devoted to beams, plates and shells. To the best of the authors’
knowledge, in spite of its evident practical importance and of the work done on vibration of FGM structures,
(see the review paper [1]), with the exception of the results in [2,3] and of those contained in a recently appeared
monograph by Librescu and Song [4], no research work related to the modeling and behavior of rotating blades
featuring the elastic twist–extension coupling, operating in a high-temperature environment and made of FGMs
has been accomplished yet.

2. The second problem considered in conjunction with the former, should consist of a thorough analysis of their
vibrational behavior.
Such a study should provide a better understanding of the implications of the incorporation of such advanced-
material systems, and, implicitly, should help their reliable design.
Herein, the case of a straight, pre-twisted thin-walled beam of variable cross-section, rotating with a constant
angular speed and exposed to a steady-state temperature field experiencing a gradient through the blade thi-
ckness is considered. It is assumed that the blade is made of FGMs whose properties vary continuously
across the blade thickness and that the material properties are temperature-dependent. In this context, both
the modeling and the vibrational behavior of rotating blades are investigated, and pertinent conclusions are
outlined.
While representing an extension of the research done in [5], in the sense of its generalization by including the
concept of FGM in conjunction with the existence of a thermal field, the results supplied here highlight the great
performances obtained when, in the context of this structural systems, FGMs are incorporated.

2 Structural model

2.1 Basic assumptions

It is considered that the blade, of non-uniform cross-section and of length L , is mounted on a rigid hub of radius R0

and is rotating with the constant angular velocity �(= �j = �J). The origin of the rotating axis system (x, y, z)
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Fig. 1 (a) Configuration of the pretwisted rotating thin-walled beam, (b) Box-beam cross-section before deformation, (c) Box-beam
cross-section after deformation

with the associated unit vectors (i, j,k) is fixed at the blade root at an offset R0 from the rotation axis (Fig. 1a),
where z is the spanwise coordinate, x and y being the cross-sectional coordinates.

In addition, three other coordinate systems are adopted: one of these, the inertial one, (X, Y, Z), with the unit
vectors (I, J, K) is considered to be attached to the center of the hub O (see Fig. 1a), the y- and Y -axes being
parallel at any time t , while the other one is the curvilinear (η, ζ, z) system shown in Fig. 1b, c. The axes η and ζ
are the principal axes of the beam cross-section located in the cross-sectional planes of the beam, with the origin
coinciding with that of the axis Z . Axes η and ζ are orthogonal and rotate about the z-axis with the cross-section
due to the built-in twist.

Finally, a local system of orthogonal Cartesian coordinates (s, z, n) is also considered, where s and n are the
circumferential and the thicknesswise coordinates, respectively, (see Fig. 1).

It should be stressed that, due to the assumed non-uniformity of the beam in the spanwise direction, x and
y become functions of both the circumferential and spanwise coordinates, s and z, respectively, implying that
x ≡ x(s, z) and y ≡ y(s, z).

One should indicate here that two approaches involving the modeling of rotating pre-twisted blades are in use.
One of these, attributed to Wagner, is based on the widely accepted helical multifilament concept, used, among
others, by Houbolt and Brooks [6], Kaza and Kielb [7] and McGee [8]. Within the other one, the tensorial approach
enabling one to convert the quantities evaluated in the curvilinear (η, ζ, z) system to the local Cartesian one (s, z, n)
was prompted by Washizu [9] and applied by Bauchau and Hong [10].

In the paper by Oh et al. [5] and the monograph by Librescu and Song [4], both methods have been illustrated,
and excellent agreements of predictions have been reached. Within the forthcoming developments, the methodology
by Wagner will be only applied. Throughout this paper it is assumed that: (i) the original cross-section of the beam
is preserved, implying that the projection of the cross-section on the plane normal to the z-axis does not distort
during deformation, (ii) the concept of the Saint-Venant torsional model is discarded in favor of the non-uniform
torsional one, (iii) in addition to the primary warping, the secondary warping effect associated with points off the
mid-line contour, is also incorporated, and (iv) the effects of presetting and precone angles are not included in the
present modeling.

In order to render the paper reasonably self-contained, a few preliminary kinematical results will be supplied
next.

2.2 Kinematics

The position vector of an arbitrary point belonging to the deformed beam structure is expressed as:

R = (x + u) i + (y + v) j + (z + R0 + w)k, (1)

where u, v and w are the displacements in the directions x, y and z, respectively. Recalling that the spin rate
is constant, keeping in mind that the rotation takes place solely in the X Z -plane, and making use of equations
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expressing the time derivatives of unit vectors (i, j, k), one obtains the velocity and acceleration vectors of an
arbitrary point M of the pretwisted rotating beam as

Ṙ = Vx i + Vyj + Vzk, R̈ = ax i + ayj + azk. (2a, b)

Their components are as follows:

Vx = u̇ + (R0 + z + w)�, Vy = v̇, Vz = ẇ − (x + u)�, (3a, b, c)

and

ax = ü + 2ẇ�− (x + u)�2, ay = v̈, az = ẅ − 2u̇�− (R0 + z + w)�2. (4a, b, c)

In these and the following equations the superposed dots denote time derivatives, the primes denote differentiation
with respect to the longitudinal z-coordinate, and the terms underscored by one or two superposed solid lines are
associated with Coriolis and centrifugal inertias, respectively.

Paralleling the approach of [4], some preliminary results needed in the subsequent developments will be derived.
To this end, we will consider the configuration of the pretwisted beam before and after deformation, (see Fig. 1b,
c, respectively). Before deformation, the coordinates of a point P on the helical fiber of the beam cross-section
expressed in terms of the distances η and ζ along the principal axes are

x(s, z) = η(s) cosβ(z)− ζ(s) sin β(z), y(s, z) = η(s) sin β(z)+ ζ(s) cosβ(z), (5a, b)

while their rate of change with respect to z are

x ′ = −β ′y; y′ = β ′x, (6)

where β = β(z) denotes the pre-twist angle, while φ = φ(z, t) the elastic twist angle.
Now, the position on the helical fiber after deformation of point P̂ is provided by

x̂ = R cos (β + φ + α) = η cos (β + φ)− ζ sin (β + φ), (7a)

ŷ = R sin (α + β + φ) = η sin (β + φ)+ ζ cos (β + φ), (7b)

ẑ = z + R0 + w = z + R0 + w0(z, t)− [
F − nrt

]
φ′, (7c)

while their rate of change with respect to z is

x̂ ′ = −(β ′ + φ′)[η sin (β + φ)+ ζ cos (β + φ)], (8a)

ŷ′ = (β ′ + φ′)[η cos (β + φ)− ζ sin (β + φ)], (8b)

ẑ′ = 1 + w′
0 − [F − nrt ]φ′′, (8c)

where w0 = w0(z, t) denotes the spanwise beam displacement.
In order to obtain the longitudinal strain in the helical fiber, expressions for dS/dz and ds/dz are needed. From

(8) we get

(dS/dz)2 = (x̂ ′)2 + (ŷ′)2 + (ẑ′)2 = 1 + 2{w′
0 − (F − nrt )φ

′′} + (β ′ + φ′)2(η2 + ζ 2), (9)

and (ds/dz), can be obtained directly from (9) by letting φ′ = 0, φ′′ = 0 and w′
0 = 0.

Thus

(ds/dz)2 = 1 + (η2 + ζ 2)(β ′)2. (10)

As a result, by adopting as valid the assumption by Houbolt and Brooks [6] according to which (η2+ζ 2)(β ′)2 <<
1, for the longitudinal strain εzz one obtains

εzz = (dS − ds)/ds = w′
0 − [F(s, z)− nrt (s, z)]φ′′ + 1

2

(
(φ′)2 + 2β ′φ′) (η2 + ζ 2). (11)

where F and rt denote the primary and second warping functions, respectively. For their definition, see [4].
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Using Eq. 11, one can cast εzz as

εzz = ε(0)zz + nε(1)zz , (12)

where

ε(0)zz = w′
0 + 1

2
(η2 + ζ 2)[(φ′)2 + 2β ′φ′] − φ′′F, ε(1)zz = rtφ

′′. (13a,b)

For further use, a more elaborated expression of the acceleration components of the twisted rotating blade is
needed. To this end, using the definitions

u(x, y, z; t) = x̂ − x = x(cos φ − 1)− y sin φ, (14a)

v(x, y, z; t) = ŷ − y = x sin φ + y(cos φ − 1), (14b)

w(x, y, z; t) = ẑ − (z + R0) = w0 − (F − nrt )φ
′ (14c)

in conjunction with (5) and (4) one obtains

ax = − φ̈(ηN + ζM)− φ̇2(ηM − ζN )+ 2�[ẇ0 − φ̇′(F − nrt )] −�2 (ηM − ζN ), (15a)

ay = −φ̈(ζN − ηM)− φ̇2(ηN + ζM), (15b)

az = ẅ0 − φ̈′(F − nrt )+ 2�φ̇(ηN + ζM)−�2[R0 + z + w0 − φ′(F − nrt )], (15c)

where, for brevity,

M ≡ cos (β + φ), N ≡ sin (β + φ). (16)

3 3-D constitutive equations of functionally graded blades

Because the FGMs are isotropic, the corresponding thermoelastic constitutive law adapted to the case of thin-walled
structures is expressed as
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

σss

σzz

σzn

σns

σsz

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

=

⎡

⎢⎢⎢⎢
⎣

Q11 Q12 0 0 0
Q12 Q11 0 0 0

0 0 Q44 0 0
0 0 0 Q44 0
0 0 0 0 Q66

⎤

⎥⎥⎥⎥
⎦

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

εss − α̂
T
εzz − α̂
T

εzn

εns

εsz

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (17)

The reduced thermoelastic coefficients are defined as:

Q11 = E

1 − ν2 , Q12 = Eν

1 − ν2 , Q66 = E

2(1 + ν)
(≡ G), Q44 = Q55 = k2G

α̂ = E

1 − ν
α, (18a, b, c, d, e)

where E and ν are the Young’s modulus and Poisson’s ratio, respectively, k2 is the transverse shear correction
factor, 
T is the steady-state temperature rise from that of the stress free state, while α is the thermal-expansion
coefficient.

For the considered ceramic–metal FGM model, one postulates that the material properties vary continuously
across the blade thickness according to the law

P(n) = EcVc(n)+ Em Vm(n), (19)

where P denotes a generic thermoelastic material property. In an expanded form we have

E(n) = (Ec − Em)Vc(n)+ Em, ν(n) = (νc − νm)Vc(n)+ νm, (20a,b)

ρ(n) = (ρc − ρm) Vc(n)+ ρm, α(n) = (αc − αm) Vc(n)+ αm, (20c,d)
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where Vm and Vc are the volume fractions of metal and ceramic components fulfilling the relation Vc(n)+Vm(n) = 1,
and subscripts m and c identify the quantities affiliated to metal and ceramic, respectively.

For the case of variation of constituents phases from ceramic to metal, Vc can be expressed as

Vc = [(2n + h)/2h]K , (21)

where h is the wall thickness of the blade, while K , (0 ≤ K ≤ ∞), is the volume-fraction parameter, providing
the material variation profile through the blade wall thickness. From (20), considered, in conjunction with (21), it
results that for n = h/2, Vc = 1, this yielding E → Ec, ν → νc and ρ → ρc, whereas for n = −h/2, Vc = 0,
where from E → Em, ν → νm and ρ → ρm .

This shows that consistent with this law, the material properties vary continuously from the top surface of the
blade where the material is entirely ceramic, to full metal at the bottom surface. From (21) it becomes evident that
an increase of the volume-fraction parameter K from K = 0, for which the blade is entirely from ceramic, results
in a continuous increase of the metal content in the detriment of the ceramic.

It is assumed that the blade is subjected to a steady-state thicknesswise temperature field, implying that T = T (n).
The steady-state equation of the one-dimensional heat transfer is expressed by

d

dn

[
κ(n)

dT

dn

]
= 0, (22)

and the associated boundary conditions are T (h/2) = Tt and T (−h/2) = Tb, where κ(n) is the thermal conductivity
in the thickness direction, while Tt and Tb denote the temperatures at the top and bottom surfaces of the FGM blade,
respectively.

For these conditions, the solution of Eq. 22 is

T (n) = Tb

⎡

⎢⎢⎢
⎣

1 + λ
∫ h/2

−h/2

1

κ(n)
dn

∫ n

−h/2

1

κ(n)
dn

⎤

⎥⎥⎥
⎦
, (23a)

where

λ = Tt − Tb

Tb
(23b)

constitutes a measure of the normalized temperature gradient across the blade wall thickness. Throughout the
numerical simulations, Tb = 300 K will be considered.

The thermal conductivity κ(n) of the FGM is assumed to vary according to the law

κ(n) = (κc − κm)Vc + κm, (24)

where that thermal conductivities κc and κm are considered to be temperature-independent.
The properties of the FGM are considered to be temperature-dependent, and to vary according to the law obtained

from experiments. The temperature dependence is expressed in a generic form as

P(n) = P0(P−1/T + 1 + P1T + P2T 2 + P3T 3), (25)

where P0, P−1, P1, P2 and P3 are the constants in the cubic fit of the specific temperature-dependent material
property, where T (in Kelvin) is the environmental temperature, (see [4,11]).

As an alternative procedure, the Mori–Tanaka mean-field scheme can be applied to evaluate the local effective
material properties (see [11]). Comparisons of the application of both Mori–Tanaka and of the simpler one, previously
presented, will be supplied later in the paper.
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Dynamics of advanced rotating blades in a high-temperature field 7

4 The equations of motion, boundary conditions, and the governing system

The equations of motion and the associated boundary conditions, suitable for the described blade model built up of
FGMs, are derived via Hamilton’s principle. This can be formulated as
∫ t1

t0
(δK − δW + δV )dt = 0; δw0 = δφ = 0 at t = t0, t1, (26)

where K and W denote the kinetic and strain energy, respectively, δV is the virtual work of external forces, t0 and
t1 are two arbitrary instants of time, while δ is the variation operator.

Having in view that
∫ t1

t0
δKdt = −

∫ t1

t0
dt

∫

τ

[ρ(axδu + ayδv + azδw)]dτ, (27)

where Hamilton’s condition for t = t0, t1 was implied, using (15) and dτ = dσdz(= ds dn dz), collecting the terms
associated with the same variations δφ and δw0, performing the integration by parts as to relieve δφ and δw0 of any
differentiation with respect to the z-variable, and recalling that the product of inertia with respect to the principal

axes is zero, i.e.,
∮
ηds = 0, one obtains Eq. 27 in the form

∫ t1

t0
δKdt = −

∫ t1

t0

{∫ L

0

[
b1[ẅ0 − (R0 + z + w0)�

2]δw0

+ {Ipφ̈ + (I 0
ζ ζ − I 0

ηη)�
2 M N − [Iww(φ̈

′ −�2φ′)]′}δφ
]

dz +
[

Iww(φ̈
′ −�2φ′)δφ

]L

0

}
dt. (28)

The expression of the cross-sectional quantities is supplied in Table 1, where (m0, m2) denote the reduced mass
terms per unit beam length defined by

(m0; m2) =
∫ h/2

−h/2
[(ρc − ρm)Vc(1; n2)+ Vm(1; n2)]dn. (29)

On the other hand, for the coupled twist–extension motion, δW is expressed as follows:

δW = 1

2

∮ ∫ L

0

(
Nzzδε

(0)
zz + Lzzδε

(1)
zz + Nszδγsz

)
ds dz, (30)

where ε(0)zz and ε(1)zz are provided by (13), while

γsz = ψ(s, z)φ′(z), (31)

Table 1 Cross-section
quantities

Quantity Definition

Ip(≡ I 0
ζ ζ + I 0

ηη) m0

∮
(η2 + ζ 2)ds

Īp Ip/m0

Ips

∮
(η2 + ζ 2)2ds

I 0
ηη m0

∮
ζ 2ds

I 0
ζ ζ m0

∮
η2ds

Iww m0

∮
F̄2ds + m2

∮
r2

t ds

B K11[Ips − Ī 2
p/S]

S(z)
∮

ds
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8 L. Librescu et al.

where ψ(s) denotes the torsional function (see [4]).
In view of the previous equations, Eq. 30 reduces to

δW =
∫ L

0

[
Tzδw

′
0 − Bwδφ

′′ + Trφ
′δφ′ + Mzδφ

′] dz, (32)

where

Tz(z, t) =
∮

Nzzds, Tr (z, t) =
∮

Nzz(η
2 + ζ 2)ds, Bw(z, t) =

∮
[F̄(s, z)Nzz − rt (s, z)Lzz]ds,

Mz(z, t) =
∮

[Nzz(η
2 + ζ 2)β ′ + ψ(s, z)Nsz]ds, (33a, b, c, d)

denote the 1-D stress measures. The expressions of the 2-D stress resultants Nz, Nsz and stress couple Lzz intervening
in (33) are given by

Nzz = K11ε
(0)
zz + K14ε

(1)
zz − N̂ T

zz, Nsz = K23φ
′, Lzz = K41ε

(0)
zz + K44ε

(1)
zz − L̂T

zz, (34a, b, c)

In (34), Ki j are 2-D stiffness quantities whose expressions are provided in the Appendix, while N̂ T
zz and L̂T

zz are
contributions brought on by the temperature field. Their expressions are

N̂ T
zz =

(
1 − A12

A11

)
N T

zz, L̂T
zz =

(
LT

zz − B12

A11
N T

zz

)
(35)

where

(N T
zz, LT

zz) =
∫ h/2

−h/2
(Q11 + Q12)α̂
T (1, n)dn. (36)

Carrying out integrations by parts in Eq. 32 so as to relieve the virtual displacements of any differentiation, one
obtains
∫ t1

t0

∫ L

0
δWdz dt =

∫ t1

t0

{∫ L

0
− [

T ′
z δw0 + (B ′′

ω + (Trφ
′)′ + M ′

z)δφ
]

dz

+ [
Tzδw0 − Bωδφ

′ + (B ′
ω + Trφ

′ + Mz)δφ
]L

0

}
dt. (37)

Including in Hamilton’s principle also the virtual work of external loads, (see [4]), collecting the terms associated
with the same virtual displacements, and keeping in mind that the virtual displacements are independent and arbitrary
within the spatial and time intervals [0, L] and [t0, t1], respectively, by setting their coefficients to zero, results in
the equations of motion:

• Equations of motion:

δw0 : T ′
z − b1ẅ0 + b1�

2(R0 + z + w0)+ pz = 0, (38a)

δφ : B ′′
w−− + [Trφ

′]′ + M ′
z − Ipφ̈ + (I 0

ηη − I 0
ζ ζ )�

2 M N∼∼∼∼∼∼∼∼∼∼ +
[

Iww(φ̈′ −�2φ′)========
]′

+ mz + m′
w−− = 0, (38b)

and in the related boundary conditions (BCs).
• For cantilevered blades these are: at z = 0 :

φ = φ′
−− = w0 = 0, (39)

and at z = L :

Tz = h1; B ′
w

– –
= hw; and B ′

w−−
+ Mz + Trφ

′ + Iww(φ̈′ −�2φ′)======== = hβ. (40)
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Dynamics of advanced rotating blades in a high-temperature field 9

In (38), pz(≡ pz(z, t)), mz(≡ mz(z, t)) and mw(≡ mw(z, t)) denote the distributed longitudinal external load,
twist and warping moment, respectively, while the terms appearing in the right-hand side of BCs at z = L are
associated with the temperature field, their definition being as follows:

h1 =
∮

N̂ T
zzds, hw =

∮
[F(s)N̂ T

zz − rt (s)L̂
T
zz]ds,

and (41)

hβ = β ′
∮
(η2 + ζ 2)N̂ T

zzds.

It should be remarked that, due to the stipulated thickness-wise dependence of the temperature field, h1, hw and
hβ are spanwise independent thermal terms and, as a result, these appear explicitly in the boundary conditions, at
z = L , only, and not in the equations of motion.

Consistent with the three boundary conditions at each edge, the governing system should be of the sixth order.
For small twist angles, implying sin φ ⇒ φ and cos φ → 1, the tennis-racket term underscored in Eq. 38b by an
undulated line becomes

(I 0
ηη − I 0

ζ ζ )�
2 M N → (I 0

ηη − I 0
ζ ζ )�

2[sin β cosβ + φ cos 2β]. (42)

In the previous and the subsequent equations, the terms underscored by one and two superimposed dashed lines
are associated with the warping restraint and warping inertia, respectively.

By virtue of Eqs. 33a,b, the second term in (38b) is expressed in terms of Tz as:

[Trφ
′]′ = T ′

rφ
′ + Trφ

′′ = T ′
z Ī p

S
φ′ + Tz Īp

S
φ′′. (43)

Now, Eq. 38b in conjunction with these last equations, becomes

δφ : −[a66φ
′′]′′− − −− +

(
Tz Īp

S φ′
)′

− · − · − + [a71w
′
0 + a77φ

′]′ − Ipφ̈

+ (I 0
ηη − I 0

ζ ζ )�
2[sin β cosβ + φ cos 2β]∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼ + [ Iww(φ̈′ −�2φ′)======== ]′ + mz + m′

w−− = 0, (44)

whereas (38a) remains unchanged. As concerns the 1-D stiffness quantities a66, a77 and a71 their expressions are
provided in the Appendix.

In order to reduce the governing equations to a single equation,w0 should be exactly eliminated in (38). Paralleling
the procedure followed in [4,5], the governing equations reduce to

− [a66φ
′′]′′− − −− +

(
Tz Īp

S
φ′
)′

− · − · −
+ (Bβ ′2φ′)′ − Ipφ̈

+ (I 0
ηη − I 0

ζ ζ )�
2φ cos 2β∼∼∼∼∼∼∼∼∼∼∼∼ + [ Iww(φ̈′ −�2φ′)======== ]′ + mz + m′

w−− = −
(

a71Tz

K11S

)′
, (45)

and the boundary conditions to
At z = 0:

φ = φ′
−− = 0, (46)

and at z = L:

a66φ
′′

− − − = −hw, − (a66φ
′′)′− − −− + Tz Īp

S
φ′

− · −·
+ Bβ ′2φ′ + Iww(φ̈′ −�2φ′)========

+ a71

K11S
Tz = hβ. (47)
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As concerns the expression of Tz , the neglect of the axial inertia and load terms in Eq. 38a, followed by its
integration with respect to z, and in conjunction with the related BC at z = L , yields

Tz(z) =
∫ L

z
b1�

2(R0 + z)dz + h1. (48)

As it clearly appears, the terms in (45) and the BCS (47b) underscored by the dotted line are due to the tension–
twist coupling, in which also the temperature is involved. However, by virtue of (48), Tz in (47b) reduces to h1.

As a result of (48), the governing equation (45) and the boundary conditions (46) and (47) become expressed in
terms of the unknown function φ(z, t) only.

These equations govern the motion of pretwisted rotating thin-walled beams of non-uniform cross-section, built
up of FGMs, exposed to a steady-state temperature field, and featuring the twist–extension elastic coupling.

For the free-warping case the terms underscored by a dashed line become immaterial and, as a result, the governing
equation becomes of the second order. This implies that a single boundary condition at each edge is required.

Until this point, in the governing equations no specific variation of the pretwist angle β along the beam span has
been prescribed. In the numerical simulations, a linear variation, implying β(z) = β0z/L , where β0 is the pretwist
at the beam free end will be considered.

5 The eigenvalue problem

Due to the complicated natural boundary conditions at the blade tip which, in addition, are non-homogeneous,
the Extended Galerkin Method is used [2,4,12]. Within this method, admissible trial functions that satisfy only
the geometric boundary conditions are employed. In spite of this, the residual terms that are the result of the non-
fulfillment of the governing equation and of natural boundary conditions are minimized in Galerkin’s sense, this
yielding a high accuracy of the solution. To this end, one considers the solution in the form

φ(z, t) = FT (z)qφ(t), w0(z, t) = WT (z)qw(t), (49)

where F,W and qφ, qw are N -dimensional column vectors of trial functions and generalized coordinates, respec-
tively, while superscript T denotes the transpose operation. Replacement of (49) in the variational integral (26),
after performing all the indicated operations and the required integrations, the discretized system results as

Mq̈(t)+ Kq(t) = Q(t). (50)

Here q =
{

qT
φ , qT

w

}T
is the 2N × 1 vector of generalized coordinates, M|2N×2N and K|2N×2N are the symmetric

mass and stiffness matrices, respectively, while Q is the load vector. Using the method presented in [4], one may

express Eq. 50 in state-space form. In this sense, defining the 4N × 1 state vector X = {
qT , q̇T

}T
and adjoining

the identity q̇ = q̇, one obtains Eq. 50 in the form

Ẋ(t) = AX(t), (51)

where the 4N × 4N state matrix A is

A =
[

0 I
−M−1 K 0

]
, (52)

while I and 0 are the identity and the zero matrices, respectively. Expressing X(t) in (51) as

X(t) = Z exp(�t), (53)

a standard eigenvalue problem is obtained

(Z −�I)X = 0, (54)

which can be solved for the eigenvalues �r and the eigenvector X. In the present case, �r = ±iωr , that implies
harmonic oscillations.
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Table 2 Comparison of
percentage frequency rise
ratio for a non-rotating
blade, featuring selected
pre-twist angles

Mode β0 = 15 deg. β0 = 30 deg. β0 = 45 deg. β0 = 60 deg.

No. Ref. [13] Present Ref. [13] Present Ref. [13] Present Ref. [13] Present

b/c = 0.05

1 11.895 11.888 41.19 41.181 79.042 79.031 120.879 120.905

2 10.338 10.333 36.082 36.080 69.775 69.795 107.377 107.485

3 8.000 8.003 28.544 28.557 56.163 56.208 87.540 87.659

b/c = 0.20

1 0.708 0.788 3.032 3.121 6.781 6.879 11.978 11.900

2 0.680 0.686 2.697 2.685 5.953 5.973 10.311 10.354

3 0.52 0.527 2.058 2.086 4.567 4.623 7.954 8.054

6 Validations of the solution methodology and of the FGM model

The validations will encompass:

(i) The accuracy of the adopted solution methodology, and
(ii) The accuracy of predictions based on the simple rule of mixtures (R. M) as compared with those by the

Mori–Tanaka (M-T) homogenization scheme.

For point (i) above, the comparisons will involve the case of a purely metallic non-rotating pre-twisted blade. In this
sense, comparisons of the percentage rise involving the frequency ratio of pre-twisted blade with the counterpart
value of the untwisted blade are supplied in Table 2 for the first three mode numbers.

The percentage rise is defined as: [(ωn)β0 − (ωn)β0=0] × 100/(ωn)β0=0 and the comparisons have been done
with predictions of [13] for a blade characterized by length ratio L/c = 2.

The results of these comparisons reveal an excellent agreement. The second set of validations involve non-
rotating (� = 0) and un-twisted (β0 = 0) FGM blades whose phases vary from ceramic to metal. The first three
dimensionless eigenfrequencies ωi = ωi/ω̂1 where the normalizing frequency ω̂1 = 1187 rad/s corresponds to
λ = 0, � = 0, β0 = 0 and to the fully metallic blade of cross-section ratio c/b = 1, are supplied in Table 3. These
have been obtained for two values of the temperature gradient λ and for selected values of the volume-fraction
parameter K , ranging from K = 0 (full ceramic) to K = 50 (full metal) evaluated on the basis of the R. M. and
the M–T schemes. The supplied results reveal an excellent agreement between the two predictions.

7 Results and discussion

Although the obtained equations are valid for a beam of arbitrary closed cross-section, for the sake of illustration,
the case of a rotating beam modeled as an FGM box-beam, (see Fig. 1), characterized, unless otherwise specified, by
R̄ = R0/L = 0.1; L/c = 8; c = 0.254 m; b = 50.8 × 10−3 m implying a cross-section ratio R(≡ c/b) = 5, and
h = 10.16 × 10−3 m, was considered. In addition, the two constituents of the graded beam are from silicon nitride
(SN) and stainless steel (SS). The constants Pi as involved in Eq. 25, associated with each of these constituent
phases can be found in [4,12], and will not be supplied here.

Figures 2a–c display in succession for a pre-twisted (β0 = 30deg) and non-rotating blade, the variation of the
first three eigenfrequencies as a function of the increase of the upper temperature, and for selected values of the
volume-fraction exponent ranging from that corresponding to full ceramic, (K = 0), until full metal (K = 50).

The results reveal that the full ceramic blade experiences the largest eigenfrequencies, and the decay, as a result
of the temperature increase, is more accentuated for the fully metallic blade.
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Table 3 Comparison of the
natural frequencies based on
Mori–Tanaka (M–T) and
the simple rule of mixtures
(R. M), for selected values
of the volume-fraction
exponent and two values of
the temperature gradient
λ, (� = 0, β = 0)

Volume fraction exponent Dimensionless
eigenfrequency
ωi

λ = 0 λ = 3

R. M M–T R. M M–T

K = 0 (ceramic) i = 1 2.384 2.384 2.292 2.292

i = 2 7.165 7.165 6.886 6.886

i = 3 11.98 11.98 11.49 11.49

K = 0.2 i = 1 1.943 1.932 1.858 1.846

i = 2 5.826 5.794 5.578 5.533

i = 3 9.729 9.675 9.313 9.241

K = 0.5 i = 1 1.647 1.634 1.569 1.548

i = 2 4.945 4.905 4.708 4.053

i = 3 8.255 8.189 7.861 7.76

K = 50 (metal) i = 1 1.000 1.000 0.882 0.882

i = 2 3.008 3.008 2.647 2.647

i = 3 5.019 5.019 4.420 4.420

Figures 3a–c depict the influence of the dimensionless rotational speed �(= �/ω̂1) coupled with that of the
volume-fraction exponent K on the first three dimensionless eigenfrequencies. The results reveal that the centrifugal
effects play a stronger beneficial role on metallic blades than on those featuring an increase of the ceramic phase.

This is due to the fact that the full ceramic blades are stiffer than their metallic counterparts, and as a result, are
less sensitive to the centrifugal stiffening effect. However, for any �, the decrease of K from K = 50 to K = 0,
i.e., an increase of the ceramic phase yields an increase of the natural eigenfrequencies.

However, the increase of � yields an alleviation of the detrimental role of the temperature-gradient increase, a
trend that becomes stronger with the increase of λ.

This is attributed to the fact that the increase of λ, together with the thermal degradation, yields a decay of the
stiffness characteristics of the blade, and due to this increased flexibility, the blade becomes more sensitive to the
stiffening effect provided by the increase of �.

In Fig. 4a–c, the influence of � coupled with that of the normalized temperature gradient across the blade
thickness on the first three dimensionless eigenfrequencies is presented for the case of a FGM blade whose ceramic–
metal constituents are mixed. The results reveal that, in general, an increase of λ plays a detrimental role on
eigenfrequencies.

Figures 5a–c present the influence of the pre-twist coupled with that of the volume-fraction exponent on the
first three dimensionless eigenfrequencies for a non-rotating blade. The results reveal that, in general, an increase
of the ceramic phase materialized by an decrease of K , yields an increase of ωi for any value of β0. However, it
appears that the increase of ωi with the increase of β0 is stronger for the blades madeup of graded ceramic-metal
constituents than for the fully metallic ones.

Figure 6a–c depict the three normalized mode shapes in twist of the non-rotating/rotating blade made up of full
metal (Fig. 6a), from a mixture of ceramic–metal, (Fig. 6b), and of full ceramic (Fig. 6c). As it can be seen, the
increase of � yields, in general, a shift of nodal points toward the blade tip.

However, with the increase of the proportions of the ceramic phase, there is a dramatic decay of this trend, and
for the fully ceramic blade, the implications of � on the first three eigenvalues become totally marginal. This trend
is attributed to the decay of blade’s flexibility, once the proportions of the ceramic phase increase in the blade
composition.

Finally, the obtained results not shown here reveal that, while the elastic warping yields an increase of the
eigenfrequencies for any K and for the relatively small L/c ratio blades, the influence of the inertial warping is
marginal.
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Fig. 2 Effects of the upper temperature rise and of the volume-
fraction parameter K on the first three dimensionless eigenfre-
quencies ωi (β0 = 30 deg., � = 0). (a) ω1; (b) ω2; (c) ω3
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Fig. 3 The influence of the variation of the dimensionless ro-
tational speed and of volume-fraction parameter K on the first
three dimensionles eigenfrequency ωi (λ = 3, β0 = 30 deg.)
(a) ω1; (b) ω2; (c) ω3
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Fig. 5 Implications of the pre-twist angle and of
the volume fraction parameter on the first three
dimensionless eigenfrequencies ωi of non-rotating blade
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Fig. 6 Variation of
torsional mode shapes for
selected rotational speeds
(λ = 3, β0=0,

� =
0 � =
0.5 ...... � = 1.0, and for
three values of the
volume-fraction exponent,
K : (a) K = 50, (b)
K = 0.5, (c) K = 0
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As concerns the tennis-racket term that depends on both the pre-twist and the rotational speed, the results in
[4,5,7,8] reveal that it plays a softening role, in the sense of a decrease of the torsional eigenfrequencies. However,
as the results reveal, the increase of the ceramic phase in the blade composition compensates this decrease. In
contrast to it, the tension–torsion coupling terms materialized by the second term in (45) plays a beneficial role, in
the sense of an increase of the torsional frequency with the increase of �, and this, for any K .
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8 Conclusions

A study devoted to the modeling and vibrational behavior of thin-walled FGM rotating blades featuring the
extension–twist elastic coupling and exposed to a temperature field has been presented. In this context, the im-
plications on the eigenfrequencies and mode shapes of the proportions of the two phases in the constitution
of the FGM, that is, ceramic and metal, measured in terms of the volume-fraction parameter K , have been
put into evidence. The thermal degradation of the material characteristics has been included in the structural
model, and its effects, considered in conjunction with the temperature gradient, the pre-twist, and the rota-
tional speed, have been assessed. It is believed that the structural model and the reported results will play a
useful role in the design of advanced rotor blades made up of FGMs and exposed to high-temperature
gradients.

Appendix: Some coefficients

Expressions of the modified local stiffness quantities Ki j (≡ K ji ).

K11 = A22 − A2
12

A11
; K14 = B22 − A12 B12

A11
, K22 = A66 − A2

16

A11
; K23 = 2K22

Ac(z)

S(z)
, K44 = D22 − B2

12

A11
,

Ai j , Bi j and Di j being the standard local stretching, bending–stretching and bending-stiffness quantities,
respectively.

Expressions of the global stiffness quantities ai j (≡ a ji )

a11 =
∮

K11ds, a71 = K11β
′ I p, a66 =

∮
[K11 F

2 − K14 Frt ]ds, a77 = 2
∮

Ac(z)

S(z)
K22ds + K11 Ips(β

′)2,

where Ac denotes the area of the blade cross-section.
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